Innovation for Our Energy Future

Distributed Bio-Oil Reforming

2005 DOE Hydrogen, Fuel Cells & Infrastructure Technologies Program Review

R. J. Evans, S. Czernik, R. French, Kim Magrini

National Renewable Energy Laboratory
May 23-26, 2005

This presentation does not contain any proprietary or confidential information

Project ID#PDP55

Overview

Timeline

- Project start 2005
- •Project end 2010
- •~5% complete

Budget

•FY05 \$100K

Partners

CoorsTek

Production Barriers

- A. Fuel Processor Capital
- B. Fuel Processor Manufacturing
- C. Operation & Maintenance
- D. Feedstock Issues
- F. Control & Safety

Target

Verify feasibility of achieving \$3.60/gge for renewable liquids distributed reforming

Objectives

Overall:

 Develop the necessary understanding of the process chemistry, compositional effects, catalyst chemistry and deactivation and regeneration strategy as a basis for process definition for automated distributed reforming

• FY05

Determine the process performance of the catalytic reforming of whole bio-oil

Approach

Technical Accomplishments

- Review of past work completed
 - Report summarizes all aspects of producing hydrogen from biomass by pyrolysis/reforming studied in past projects
- Whole oil successfully run
 - With 10% MeOH addition, bio-oil processing was trouble free over short run durations (up to16 hrs)
- NREL catalysts shown to be effective
 - Four catalyst compared with commercial
 - Patents being filed

Bio-Oil

Bio-oil produced by fast pyrolysis of biomass with 75% yield is comprised of many oxygenated organic chemicals.

- **≻**Properties
 - ➤ Not miscible with hydrocarbons
 - ➤ Heating value ~ 17 MJ/kg
 - ➤ Density ~ 1.2 kg/l
 - ➤ Acid, pH ~ 2.5
 - ➤ Pungent odour
- ➤ Energy Density ~5 times green wood chips

Problem: Catalyst Attrition

Reforming: $CxHyOz + H_2O(g) \rightarrow H_2 + xCO$

Water gas shift: $H_2O + CO \longrightarrow CO_2 + H_2$

Gasification: $C + H_2O(g) \longrightarrow COx + H_2$

National Renewable Energy Laboratory

Catalysts

Whole Bio-oil on catalyst developed in prior work

- Develop catalysts to reform light and heavy organics
- New supports now available with potential novel activity
- New catalyst rapid screening reactor available for whole oils provides capability for combinatorial screening
- New catalyst characterization system available for determining catalyst deactivation, reactivation, and coking mechanisms
- Develop low [Ni] and bimetallic (Ni, Cr) reforming catalysts
- Lifetime tests (activity steady > 500 h)

Catalyst Microactivity
Test System

Bio-Oil Reformer System

Reforming Whole Bio-oil

Reforming Whole Bio-oil

Reforming Whole Bio-oil

Multivariate Data Analysis

- Objective: develop a sensitive metric for catalyst performance to compare experiments
- Factor analysis used to determine correlated behavior among both independent (e.g., conditions) and dependent (e.g., products) variables
- Factor 1 represents 45% of variance in data set
 - 6 experiments = 10 variables x 700 readings

Variable Contributions

Factor Analysis Run Comparison

Response to Reviewers Comments

- Project should be combined with clearer focus on the program goals.
 - Efforts combined in FY05. Historical approach based on co-products economics now switched to distributed reforming of bio-oil. New concepts in development to optimize this approach based on low temperature (650 °C) autothermal reforming.
- Limited progress made in FY04.
 - Only limited progress was made in FY04 due to drastic budget cutbacks (\$200K in FY04 and \$100K in FY05).
 - The conceptual design completed in 2004 is highly relevant to the distributed reforming challenge since it addresses catalyst and heat management in scale up to 250 kg H2/day.

Future Work

- FY06
 - Develop low-temperature staged autothermal reforming systems based on homogeneous and heterogeneous partial oxidation, appropriate for small-scale automated systems
 - New catalyst development for this new approach with emphasis on deactivation and poisoning
- FY07
 - New reforming process reactor configuration
 - Reaction Engineering
- 2008
 - Bench scale bio-oil reforming tests for long-term testing
- 2009
 - Scale up system development

New Distributed Bio-Oil Reforming Approach

Oxidative Cracking of Pyrolysis Products

M/z 128 = Naphthalene

Oxidative Cracking of Pyrolysis Products

M/z 28 = CO,ethylene

Project Time Line

FY 2003	FY 2004	FY 2005	FY 2006	FY 2	007	FY 2008	FY 2009	FY 2010	FY 2011	FY 2012
Distributed R	Reforming	C3	(F	22	_(F	2	(1	P5 (C12)		
		Sf3	C5 (A	\ <u>\</u>		9 (A2 (Sf5	4	5
		Task 2: Distribเ	ited Reforming of	Renewal	ole Liquio	l Feedstocks				

Milestones 🔷

- 4 Verify feasibility of achieving \$3.60/gge for renewable liquids distributed reforming.
- 5 Down-select research for distributed production from bio-derived renewable liquids.

Outputs

- P2 Output to Delivery, Storage and Fuel Cells: Assessment of fuel contaminant composition.
- P3 Output to Systems Analysis and Systems Integration: Impact of hydrogen purity on cost and performance.
- P5 Output to Systems Analysis and Systems Integration: Impact of hydrogen purity on cost and performance.
- P6 Output to Delivery, Storage and Fuel Cells: Assessment of fuel contaminant composition.

Inputs

- C3 Input from Codes and Standards: Preliminary Assessment of Safety, Codes and Standards requirements for the hydrogen delivery infrastructure.
- Sf3 Input from Safety: Safety requirements and protocols for refueling.
- C5 Input from Codes and Standards: Completed hydrogen fuel quality standard as ISO Technical Specification.
- A1 Input from Systems Analysis: Complete technoeconomic analysis on production and delivery technologies currently being researched to meet overall Program hydrogen fuel objective.
- F2 Input from Fuel Cells: Research results of advanced reformer development.
- V9 Input from Technology Validation: Final report on safety and O&M of three refueling stations.
- A2 Input from Systems Analysis: Initial recommended hydrogen quality at each point in the system.
- C12 Input from Codes and Standards: Final hydrogen fuel quality standard as ISO Standard.
- Sf5 Input from Safety: Safety requirements and protocols for refueling.

Safety

- NREL's Thermochemical Users Facility as a Biomass Hydrogen Resource
 - Process Control Development
 - Best Practices Training Opportunities
 - Ten years of Biomass-to-Hydrogen Lab and Engineering Performance Data